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Abstract: Liver cancer usually has a high degree of malignancy and its early symptoms are
hidden, therefore, it is of significant research value to develop early-stage detection methods of
liver cancer for pathological screening. In this paper, a biometric detection method for living
human hepatocytes based on terahertz time-domain spectroscopy was proposed. The difference
in terahertz response between normal and cancer cells was analyzed, including five characteristic
parameters in the response, namely refractive index, absorption coefficient, dielectric constant,
dielectric loss and dielectric loss tangent. Based on class separability and variable correlation,
absorption coefficient and dielectric loss were selected to better characterize cellular properties.
Maximum information coefficient and principal component analysis were employed for feature
extraction, and a cell classification model of support vector machine was constructed. The results
showed that the algorithm based on parameter feature fusion can achieve an accuracy of 91.6%
for human hepatoma cell lines and one normal cell line. This work provides a promising solution
for the qualitative evaluation of living cells in liquid environment.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, malignant tumor lesions have become one of the major diseases endangering
human health and life [1,2]. Pathological studies show that nearly 90% of deaths in cancer
patients are attributed to metastasis [3,4]. Detecting circulating tumor cells (CTC) is of great
significance for the real-time monitoring of tumor development, especially for the early detection
of cancer. Besides, it can also predict potential recurrence and assess the risk of death [5,6].
As a cutting-edge tumor detection technology, liquid biopsy utilizes human body fluids as a
sample source for detection, diagnosis, and in vitro experiments. This technology meets the need
for efficient and non-invasive tumor diagnosis and is applicable to both primary and metastatic
patients. Therefore, it has attracted extensive attention from scholars worldwide. Compared
with traditional methods, liquid biopsy is advantageous for simpler, non-invasive sampling, good
repeatability, available for continuous monitoring, and overcoming tumor heterogeneity [7].

Though able to detect circulating tumor cells [8], the practical operation of liquid biopsy is still
limited due to the rarity and structural complexity of CTCs. At present, immunostaining is the
mainstream method for CTC detection [9–12]. The methods require multi-step cell preparation
and extraction process, which may lead to the loss and damage of tumor cells and adversely
affect the accuracy of detection. Also, the complete physiological state of living cells, which has
a key influence on the subsequent molecular typing, tumor staging and drug action detection
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experiments, may be interfered by external labeling chemicals in immunostaining. Therefore,
there is an urgent need for a label-free technique that can maintain the cellular properties.

Terahertz (THz) wave is a kind of electromagnetic radiation with a frequency band of 0.1-10
THz (1 THz= 1012 Hz), located between microwave and infrared radiation [13]. The vibrational
and rotational frequencies of molecular chemical bonds in tumor markers such as nucleic acids,
proteins, carbohydrates, and abnormal metabolites are located in the THz band, thus they can
be characterized in THz spectrum. Based on the properties of THz waves, THz technology can
distinguish the cancer cells from the target cells according to their differences in composition and
structure [14–16]. Therefore, THz technology has extreme sensitivity to the morphology and
physiological characteristics of cells, which is conducive to evaluating the complete physiological
activities of living cells in different periods from a dynamic perspective and realizing long-term
monitoring. It is considered to introduce terahertz time-domain spectroscopy (THz-TDS) to
study tumor cell lines in liquid environment [17].

Researchers have explored the differential characterization of the hydration state, permeability,
and other characteristics of tumor cells, as well as the changes in cytopathologic status induced
by drugs or culture medium environment. Shiraga’s team used the THz attenuated total reflection
system to detect three kinds of tumor cells, DRD-1, HEK293 and HeLa, using the complex
dielectric constant derived from the THz spectrum, proving that THz spectroscopy can characterize
the dynamic characteristics of water molecules in human tumor living cells [18]. Grognot et al.
used saponins to infiltrate epithelial cells and used THz attenuated total reflection imaging to
conduct real-time measurement of cytoplasmic leakage. The result is proven to be consistent
with those of standard bicinchoninic acid protein assay [19]. Zou et al. detected the dielectric
response of mammary epithelial cells and recorded the state changes of cells under oxidative
stress. They verified the results of THz detection using fluorescent-labeled optical imaging and
flow cytometry, demonstrating that this technique can monitor the process of apoptosis in real
time [20]. Various machine learning methods were also used to analyze the detection results
[21,22]. Liu et al. screen hepatocellular carcinoma by THz pulse signals combining variational
mode decomposition and composite weighted-scale sample entropy. This method can distinguish
similar signals [23]. Cherkasova et al. adopted Random Forest (RF) and Extreme Gradient
Boosting to analyze the blood plasma samples of glioma patients [24]. Yang et al. combine
principal component analysis (PCA) and support vector machine (SVM) to identify benign and
malignant cell component [25].

In this study, we cultured two human hepatoma cell lines Huh-7 and HepG2, and a normal cell
line MIHA, and then detected the cell lines at four different concentrations while maintaining cell
activity. On this basis, we explored the differential characterization of the interaction response
between THz waves and different living cells. Absorption coefficient and dielectric loss were
selected based on statistical analysis method and correlation analysis. Then, combined with
the absorption coefficient and dielectric loss spectra, we employed the maximum information
coefficient (MIC) and the principal component analysis to extract the frequency domain features,
and we adopted the SVM model for identification, so as to realize the qualitative evaluation of
living cells.

2. Methods

2.1. Experimental preparation

In this study, a Z-3 THz-TDS system developed by Zomega Corporation, USA, was employed,
and a Vitesses-800-5 mode-locked Ti:sapphire femtosecond laser by Coherent Company of USA
was applied as the excitation source. The laser pulse is centered at 800 nm with a pulse width of
less than 100 fs and the output power is 960 mW. More details of the system can be found in our
earlier work [26].
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The liquid sample cell was purchased from Hellma Analytic (Germany), as shown in Fig. 1.
The windows of cuvette were made of suprasil. Liquid samples can be injected from the two
small holes in the upper part with a pipette. The amplitude ratio and phase difference of the first
transmission are very close to the measured value of multiple refractions through experiments,
and the error is less than 3%, which verifies that the multiple refractions of the window can be
ignored. It has an optical path of 0.1 mm and an inner diameter of 13 mm. The total volume
including the pipes is 160 µL. During the measurement, the environment was kept at room
temperature, and nitrogen flow was continuously injected into the system to keep the humidity
below 1%. Due to the downward trend of transmission coefficient, 0.2-1.4 THz was applied as
the effective frequency range in this paper.

Fig. 1. Schematic diagram of intersecting surface of the liquid cell.

Hepatoma cell lines Huh-7, HepG2 and normal liver cell lines MIHA were cultured using
DMEM medium (supplemented with 10% fetal bovine serum, 50 µg/mL streptomycin and 50
µg/mL penicillin) in an incubator with 5% carbon dioxide concentration at 37 °C. The pre-cultured
cells were digested by 0.25% trypsin/EDTA, which was removed by centrifugation at 1200 rpm
for 5 min, and the concentrated cells were re-dispersed in the medium (1 mL) Considering the
needs for cell growth and for the characterization of cellular properties of various concentrations,
we took twelve different cell suspensions with four concentrations of 103 cell/mL, 104 cell/mL,
105 cell/mL, and 106 cell/mL.

Before the experiment, the cells were evenly distributed in the culture by blowing with a
pipette gun and were then injected into the liquid pool. After the detection was completed, the
residual cells and proteins were cleaned with aqua regia, then washed with distilled water, and the
residual water was blown out by an air pump to make the inside fully dry. During the detection,
we ensured that the cell activity was always maintained above 85%. In addition, by rotating the
liquid pool and changing its angle with the direction of the electric field intensity of the THz
wave, it was proved that the parameters, such as peak value, time delay, refractive index, and
absorption coefficient, were basically independent of the sample’s orientation, meaning the cell
suspension could be regarded as isotropic. 18 samples were taken from each cell suspension, and
each sample was measured five times, so a total of 1080 sets of time-domain spectral data were
obtained from cell suspensions.

Fast Fourier transform (FFT) was used to calculate the THz frequency domain spectrum from
the obtained time domain spectrum. Since the transmission system was a window-liquid-window
multilayer structure, the material parameter extraction method proposed by Duvillaret et al. [27]
is employed. Considering that the strong absorption of THz wave by liquid can annihilate the
micro signals, it has been proved experimentally that the extremely weak signals caused by
multiple refractions can be ignored to simplify the THz optical parameter model. Taking the
signal of the empty liquid cell as the reference signal and the signal with cell suspension as the
sample signal, the refractive index, absorption coefficient, dielectric constant, dielectric loss, and
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dielectric loss tangent of the sample are calculated, as shown in Eq. (1) to (5):
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where d, c, ω stand for the optical path of the liquid cell, speed of light, and frequency. n1(ω) is
the refractive index of the window material quartz,

∼
ε(ω) is complex dielectric constant, whose

real part is dielectric constant and imaginary part is dielectric loss. tan δ are dielectric loss
tangent, φ(ω) and ρ(ω) are the phase difference and the amplitude ratio between the reference
signal and the sample signal, respectively.

2.2. Class separative criterion

To find a set of features that are most effective for classification, it is necessary to measure the
effectiveness of classification performance by category separability criteria. At present, the
classification separability criterion of geometric distance and probability density is an important
basis for classification and discrimination. Ideally, the samples of the same class generally show a
densely clustering state in the feature space because of their commonness, while different classes
are scattered. Therefore, the inner-class distance between the samples should be smaller than
their inter-class distance. In the case of overlapping samples, the feature with a large inter-class
distance and a small intra-class distance in the feature space should be selected. Generally, the
within-class scatter matrix SW and the between-class scatter matrix SB are employed to measure
the distance:

SW =

M∑︂
i=1

P(Ωi)
1
Ni

Ni∑︂
k=1

(X(i)
k − m(i))(X(i)
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where M stands for the number of classes, Ωi stands for the sample set {X(i)
1 , X(i)

2 , . . . , X(i)
Ni
}, P(Ωi)

stands for the proportion of the sample set in the total set, Ni is the number of samples in one class,
m is the mean value of population, and m(i) is the mean value of one class. tr(SW ) represents the
average measure of the characteristic variance of all classes, tr(SB) represents a measure of the
average distance between the mean value of each class and the mean value of population. We
define J = tr(SB)/tr(SW ) as the criterion to represent the separability of classes.

2.3. Maximal Information Coefficient (MIC)

Being able to effectively capture linear, nonlinear, and non-functional association among
variables in high-dimensional data sets [28], MIC, as a measure of evaluating feature goodness
and redundancy, is widely used in genomics, medical data analysis and other fields [29,30].
Developed on the basis of mutual information in information theory, MIC corrects mutual
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information value through unequal interval optimization, making the selected information more
detailed, accurate, general and equitable.

The basic principle of MIC is dividing the data set into different grids, then calculating the
mutual information among variables according to the distribution of data in the grid. After
normalization, the maximum value of mutual information is selected as the final value to
approximate the correlation between variables. Assume that variable X represents a feature of
cells in THz spectrum and Y represents different cell lines. For the two-dimensional scatter
diagram composed of variables, specific grid division is carried out according to different division
numbers and positions, then mutual information values are calculated, respectively. For example,
divide m and n regions on the x-axis and y-axis, respectively, to make a m × n grid. Define the
grid as G, then the mutual information I(D|G) of data set D(X, Y) under this division is shown in
Eq. (8):

I(D|G) =
∑︂

m∈X,n∈Y
p(m, n) log

(︃
p(m, n)

p(m)p(n)

)︃
(8)

where p(m, n) is the joint probability distribution of variables X and Y, p(m) and p(n) are the
marginal distribution, which is estimated by the probability of data falling in the grid. Since the
position of grid division may be equal or unequal, the maximum value of each division is taken
as the mutual information value under this division. It is standardized for subsequent comparison,
expressed as M(D)m,n.

M(D)m,n =
max I(D|G)

log(min{m, n})
(9)

Then traverse the values of different m and n, find the corresponding M(D)m,n of each group,
and obtain the maximum value of all combinations as MIC

MIC(D) = max
mn≤B(N)

{M(D)m,n} (10)

where, B(N) is the upper limit of grid division, which is generally set to 0.6 power of the total
number of samples. In this paper, the MIC of each parameter in the 0.2-1.4 THz frequency band
is calculated to select features with higher correlation.

2.4. SVM

SVM, a machine learning method based on structural risk minimization principle with good
generalization performance, has wide application in the analysis and recognition of THz spectrum
[31,32] for its advantages in solving small-sample-scale, nonlinear dataset. In the case of linear
indivisibility, nonlinear mapping is used to map samples to high-dimensional space, and then the
maximum margin hyperplane is found to make the data linearly separable, as shown in Eq. (11)

min 1
2wTw + C

N∑︁
i=1
ξi

s.t. yi(wT · ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0
(11)

where w is the normal vector to classification hyperplane in feature space, b is the intercept of
hyperplane, ϕ(xi) is mapping function, ξi is slack variable and C is penalty factor. Lagrange
multiplier method is used to convert the constraint of maximum margin into a dual problem, so
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as to optimize the solution [33]
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where αi is the Lagrange multiplier, K(xi, xj) = ϕ(xi) · ϕ(xj) represents the kernel function. In
this paper, radial basis function (RBF) is used as the kernel function, as shown in Eq. (13)

K(xi, xj) = e−γ | |xi−xj | |
2
, (13)

where γ is the kernel parameter. SVM with RBF kernel function usually improves the model
performance by adjusting the penalty factor C and the kernel parameter γ, C measures the
relationship between the complexity of the support vector and the misclassification rate, and
γ measures the contribution of a single sample to the classification. In this paper, the optimal
hyperplane is selected by grid search.

3. Results

3.1. Terahertz spectrum of three cell lines

THz responses of three different cells were measured at four concentrations of 103 cell/mL,
104 cell/mL, 105 cell/mL, and 106 cell/mL while maintaining cell viability. The data of 105

cell/mL was shown in Fig. 2, where the empty cuvette signal (filled with air) was taken as a
reference. It can be seen that there are certain differences in the time delay and the peak value
among hepatoma cell lines Huh-7, HepG2, and normal cell line MIHA. To further analyze the
characteristics of three cell lines at the concentration of 105 cell/mL, refractive index, absorption
coefficient, dielectric constant, dielectric loss, and dielectric loss tangent were calculated. The
results are shown in Fig. 3.

Fig. 2. Terahertz signals and frequency domain spectra for different kinds of cells at the
concentration of 105 cell/mL. (a) THz time domain spectra. (b) THz frequency domain
spectra.

Absorption coefficient and dielectric loss show different responses at some frequencies, as
shown in Fig. 3(b) and Fig. 3(d) (the insets show a clearer zoom-in result), respectively. The error
bars correspond to the standard deviations. We observe that the results for three kinds of cells do
not overlap in some frequency bands of 0.20-0.25 THz. These differences can be employed to
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Fig. 3. Spectra of THz frequency parameters for different kinds of cells at the concentration
of 105 cell/mL. (a) refractive index. (b) absorption coefficient. (c) dielectric constant. (d)
dielectric loss. (e) dielectric loss tangent.
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better distinguish the three kinds of cells. For refractive index, dielectric constant, and dielectric
loss tangent, though their THz responses are different in the frequency band of 0.2-1.4 THz, the
error bars are partially overlapped, which make them unideal for the distinguishment. Therefore,
the influence of different cells at different concentrations on the interaction between cells and
THz waves can be identified by analyzing the spectra of characteristic parameter. Due to the
complicated response mechanisms of different characteristic parameters toward the biological
features of cells, such as water content and biomarker content, there are differences in the
discrimination of each parameter. It is necessary to further analyze such differences and select
the parameters that can better identify the tumor cells.

3.2. Feature parameter selection

In order to select parameters that can better characterize cells, class separability criterion was
employed to evaluate the classification discrimination. In this paper, we need to compare
the classification performance of different THz frequency parameters with different units and
ranges. Since there were amplitude variation range differences among the parameters, data
scaling was performed through data standardization. Due to the great difference in the trend and
curvature of parameters, it was impossible to compare the difference of a certain frequency band
directly, as within-class and between-class scatter can only identify the separability of one point.
Therefore, J = tr(SB)/tr(SW ) was calculated as class separability criterion to measure the overall
discrimination of each parameter in the effective frequency band of 0.2-1.4 THz. Larger value
represents smaller intra-class distance and larger inter-class distance at the same scale. Exemplary
data at 105 cell/mL were shown in Table 1. It can be seen that the absorption coefficient and the
dielectric loss are parameters with high differentiation. The intra-class distances of these two
parameters are larger than their inter-class distances, which makes the overlap between different
classes as small as possible. This result is consistent with the conclusion obtained from the
parameter spectra.

Table 1. Classification separability results of single THz frequency parameter.

Feature parameter Refractive index Absorption
coefficient

Dielectric constant Dielectric loss Dielectric
loss tangent

tr(SB) 0.53 0.02 0.24 0.03 0.00

tr(SW) 1.07 0.02 0.59 0.01 0.03

tr(SB) / tr(SW) 0.50 1.03 0.41 2.14 0.04

To further visualize the results of classification separability, the first two principal components
(PC) of parameters were characterized by PCA. The differences in characteristic parameters of
cell lines at four concentrations result not only from the influence of cell concentration, but also
from the influence of the hydration layer outside the cells [34]. The original 100-dimensional
data of four concentrations were used as the input of PCA to find out the parameters with
higher specificity. The distributions of the first two PCs of different cells containing data of all
concentrations were shown in Fig. 4. Though any single parameter is not sensitive enough for
cells at all concentrations, causing partially overlap of characteristic distributions of different cells,
it can be seen that the absorption coefficient still has relatively higher differentiation. Specifically,
the absorption coefficient is highly sensitive to the change of cell concentration, resulting in a
higher dispersion at low concentration and high concentration on PC1. In Fig. 4(b), the mean
values of PC2 for MIHA, HepG2 and Huh7 cells are 0.59, 0.48 and 0.37, respectively, which can
basically distinguish the three types of cells. (though the mean values of those for three types of
cells are almost the same using the other four parameters).

In addition to judging by class separability, we also calculated the correlation and identified the
broad functional relationships among variables, so as to select parameters with strong correlation
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Fig. 4. Visualization of the first two PCs using five parameters. (a) refractive index. (b)
absorption coefficient. (c) dielectric constant. (d) dielectric loss. (e) dielectric loss tangent.
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Fig. 5. Maximal information coefficient of THz frequency parameters. (a) refractive index.
(b) absorption coefficient. (c) dielectric constant. (d) dielectric loss. (e) dielectric loss
tangent.
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and interpretability. Therefore, the data of all concentrations were also mixed and grouped
according to the type of cells. MIC of each parameter in the frequency band 0.2-1.4 THz
were shown in Fig. 5. Specifically, the trend of the MIC of absorption coefficient has a higher
fluctuation than the other four parameters. The MIC in the given range is greater than the mean
value, which shows a stronger correlation with the cell type and a more comprehensive and
sensitive response to cell components. MIC values of other parameters in overall frequency band
are relatively balanced and the score is within the range of 0.4-0.5, while the value of dielectric
loss in frequency band of 0.2-0.4 THz is about 0.55, indicating higher sensitivity. To sum up, the
absorption coefficient can be considered as the main parameter for distinguishing the type of
cells, and we use its fusion with the dielectric loss to obtain higher accuracy. In earlier paper [21],
it has been found that the absorption coefficient is a parameter that can effectively distinguish
between tumor cells and normal cells. It is generally believed that this is because in addition
to water, the absorption of THz waves by other components of cells also exhibits significant
differences. For example, some scholars have studied the THz response differences of tumor
markers such as DNA methylation and carcinoembryonic antigen at different levels.

3.3. Qualitative identification of cells

PCA was employed to reduce 100-dimensional features within the range of 0.2-1.4 THz to
20-dimensional, and SVM was used to classify the extracted features for different types. Since
training with mixed concentration was conducive to better recognition of terahertz characteristics,
80% of the mixed data of all concentrations were selected as the training set and 20% as the test
set. Then we compared the performance of the models of the above five parameters and the
model of absorption coefficient and dielectric loss fusion, and analyzed the impact of different
feature selection methods on classification results according to accuracy, precision and recall, as
shown in Table 2.

Table 2. Classification results using different feature selection methods.

Feature
parameter

Refractive
index

Absorption
coefficient

Dielectric
constant

Dielectric
loss

Dielectric
loss tangent

Absorption
coeffi-

cient+Dielectric
loss

Accuracy 91.3% 96.2% 94.1% 95.7% 94.9% 98.7%

Precision 91.2% 96.1% 93.5% 95.6% 94.8% 98.8%

Recall 91.3% 96.1% 93.6% 95.6% 94.8% 98.6%

As can be seen from Table 2, when a single parameter is employed for prediction, the
results from using the absorption coefficient or the dielectric loss are better than the other three
parameters, which is consistent with the results of parameter selection. Compared with the
results of using a single parameter, the results using absorption coefficient and dielectric loss
fusion are improved by a certain degree, indicating that the sensitive features extracted by the
two parameters do not coincide. Thus, feature fusion can avoid information loss to the greatest
extent and improve prediction accuracy through complementary advantages.

In order to further describe the differences of cells at different concentrations and judge the
impact of the division method on prediction accuracy, we adopted absorption coefficient and
dielectric loss fusion as the basis, and we took the mixed data of three high-concentration cells as
the training set. A low concentration of 103 cell/mL was predicted to classify the type of cells.
After reducing the dimension to 40 dimensions by PCA, the classification model was established
using RF, back propagation (BP) neural network, and SVM, as shown in Table 3. In addition, the
method of extracting 60 dimensions through MIC and then reducing to 40 dimensions by PCA
was also compared, as shown in Table 4.
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Table 3. Cell qualitative discrimination results using PCA and three classification
models.

Algorithm PCA-RF PCA-BP PCA-SVM

Accuracy 76.8% 79.2% 89.2%

Precision 80.0% 87.6% 90.8%

Recall 76.1% 78.8% 89.0%

Table 4. Cell qualitative discrimination results using MIC, PCA and three
classification models.

Algorithm MIC-PCA-RF MIC-PCA-BP MIC-PCA-SVM

Accuracy 78.9% 88.3% 91.6%

Precision 82.6% 91.1% 92.3%

Recall 78.9% 88.3% 91.3%

As can be seen from the table, compared with the division method of mixing cells of four
concentrations, the prediction accuracy of this method decreases. The characteristics of cells
with high concentration are more obvious, while cells with low concentration are more interfered
by the water content, as the strong absorption of water to THz waves annihilated part of the
effective information. The features extracted from data at higher cell concentrations could not
cover the complete characteristics of low concentrations, but the prediction accuracy of SVM still
reaches 89.2%. Compared with the other two algorithms, SVM, as a machine learning algorithm
suitable for small sample sets, shows a higher prediction accuracy in this data set. Precision and
recall are relatively balanced, which reduces the probability of misdiagnosing normal cells as
hepatoma cells. The stability and effectiveness of the model are negatively affected by partial
noise interference in the THz signal, which may introduce interfering features during PCA
feature extraction. Therefore, PCA can be performed better after selecting features with higher
correlation through MIC, which can improve the prediction accuracy to 91.6%. Figure 6 shows
the ROC curve of the MIC-PCA-SVM model, which has a good recognition ability for all three
types of cells, with the best classification performance for Huh-7.

Fig. 6. ROC curve of the MIC-PCA-SVM model.

4. Conclusion

In this paper, based on absorption coefficient and dielectric loss fusion, a qualitative identification
method of hepatocellular carcinoma living cells based on THz frequency parameters is proposed.
Making full use of the THz-TDS, we can calculate the THz parameters which contain abundant
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properties. For more accurately extracting pathological characteristics of living cells, we explored
the parameters that can better represent cell differences based on the class separability and
correlation discrimination. Specifically, based on the class separative criterion of inter-class and
inner-class distance, the absorption coefficient and dielectric loss were selected, and visualized by
dimension reduction through PCA. Then the MIC was employed to verify the higher correlation
between the two parameters. Based on the feature fusion, MIC and PCA were employed for
dimension reduction, and SVM was adopted to realize the distinction between two human
hepatoma cell lines Huh-7, HepG2 and one normal cell line MIHA. By preferentially selecting
strong correlation features and reducing noise interference, accuracy, precision and recall were
improved to 91.6%, 92.3% and 91.3%. And it can capture the characteristics of different cells.
In the future, we will conduct experiments at lower cell concentrations to improve the detection
sensitivity and increase the number of multiple cell combination experiments to further enhance
the generalization and stability of the model.
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